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COMMENT 

A note about the enumeration of self-avoiding walks 

W J R Eplett 
Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK 

Received 13 November 1985 

Abstract. General Mobius inversion is used to obtain an explicit formula for the number 
of self-avoiding walks between two points of the three-dimensional integer lattice. The 
consequent probabilities and expected values are of interest in physical chemistry, par- 
ticularly the formation of polymer chains using excluded volume interaction. 

1. Introduction 

One of the celebrated problems of applied probability is the asymptotic behaviour of 
the number of self-avoiding walks (SAW) on lattices such as the three-dimensional 
integer lattice. These walks are interesting, particularly for modelling the formation 
of polymers using excluded volume interaction (thus molecules in the polymer chain 
may not occupy the same site of the lattice). The background and conjectures for 
the asymptotic number of SAW are well known and useful summaries of this may be 
found in Tome and Whittington (1975) and Freed (1981). Considerable attention has 
also been given to the enumeration of the number of SAW with a small number of 
steps; generally this is done through computer generation of SAW, such as Martin ef 
a1 (1967) and Wall and Seitz (1979) but more explicit techniques have been used, in 
particular the recursions of Chay (1971). 

This comment demonstrates how Mobius inversion as described by Rota (1964) 
gives an explicit expression for the number of SAW with n steps between two points 
of any lattice in terms of the numbers of (non-self-avoiding) paths of the lattice. The 
intention behind the development of this formula was to use it to investigate the 
asymptotic questions, but this proves difficult as discussed in the remarks of 0 3. 
However, the result still seems worth reporting for its own interest as a non-trivial 
application of Mobius inversion and for its application to the enumeration of short 
SAW. Since (2.2) is an explicit formula it always presents the possibility of providing 
a means to answering the asymptotic questions. Theorem 2.1 covers SAW on the 
three-dimensional integer lattice, but it is clear that the technique transfers quite 
generally to any lattice and furthermore to SAW restricted in some way, such as through 
absorption at a barrier (see Hammersley et a1 1982). In this case the paths appearing 
on the right-hand side of (2.2) need not be self-avoiding but must satisfy the other 
restrictions imposed. 

2. SAW on the integer lattice 

The walks considered here may be regarded as mappings U :  [n] = {0,1,2, .  . . , n}+ S = 
Z3 with the requirement that each step moves the walk to a neighbouring site of the 
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lattice so that for OS i < n, lw(  i )  - w (  i + 1 ) )  = 1 where for x, y E S, Ix - yI = 
(xl -yll + (x2 - y21 + Ix3 -y31. Thus as the basic sets of walks starting at 0 E S take 

W,, = { U :  w ( 0 )  = O,lo(i)  - w ( i +  I ) [  = 1 ,  O S  i < n} 
then the SAW of n steps starting at 0 are given by 

Y,,={wE Wn: w ( i ) # w ( j ) , O s i # j S n } .  

W : : = { w E W n :  w ( n ) = a }  Y; = Y,, n W; U € S  

In the first instance it is easier to use 

walks ending at a. Then Mobius inversion gives s,,(a) = lY;l in terms of {w,(b): b E 

S , l S m S n }  where w,(b)=IWbml. 
In order to state theorem 2.1, we define a further set C,, of mappings 5: C = 

C(6) c [n]+ S which satisfies the property that 5c w for some w E W,, (alternatively, 
[ E  C, if it can be extended to a walk in Wn) .  Let is = IIm(6)l = [{[(c): c E C c [n]}1 
the cardinality of the image, and hence define the vector ([511, [(I2, . . .) where [5Ij = 
number of s E Im(6) for which j = I,$-'(s)l, so that necessarily [ [ I j  = 0, j > i,. Then by 
definition Zjj[5Ij = c, = IC(S)l and Z j [ 5 I j  = if. The mapping C ( 5 )  picks a subset of 
the n steps of the walk w (  W,) as the pre-image and maps this to the sites of the lattice 
visited at those steps. Thus c, denotes the number of steps selected in the pre-image 
and is the number of sites visited on those steps. To illustrate this we consider the 
corresponding definitions on Z2 and take n = 11 with the following walk w (the order 
in which sites are visited are given in parentheses): 

-2 

-1 

Then, for example, we take 6 defined by w and C(5) = {2,3,5,7,8,9,10,11} (thus 
cs=IC(S) l=8) .  At the steps in C(5) the walk visits the circled sites and these give 
Im(5) = ((1, l ) ,  (2, l) ,  (3,0), (2,2),  (3,2),  (3,1)}; two of these sites are visited twice on 
steps included in C(5). Thus i ,=6  and [(I1 =4 ,  [512=2, [ [ I j  =0, j 3 3  (four sites 
visited once in C ( t ) ,  two sites visited twice, none visited more than twice). 

The basic enumeration result for SAW is contained in the following theorem: the 
summation in (2.2) extends over a subset Cf of C,, corresponding to choices of 5 in 
which each site in Im(5) is visited at least twice at steps in C ( 5 )  (Cf is more explicitly 
defined below). 

Theorem 2.1. For a E S such that there exists w E Y,, satisfying w ( n )  = a, the following 
holds: 
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3 

[4(mj+bj)]! n [t(mj-bj)]! 
j = 1  

where the summation is over { (m, , m2,  m3):  m ,  , m 2 ,  m3 3 0, ml + m2 + m3 = m} and if 
mj + bj or mj - bj are not even, then the term in the summation equals 0. Alternatively 

w,(b) = (2"-3/r3) lo lo lo2w exp[ - i(b, 8,  + b, O2 + b3 e,)] 
2 w  2 7  

x [ e x p ( i ~ , ) + e ~ p ( i ~ ~ ) + e x p ( i ~ ~ ) ] ' "  de, de2 de3. 

Proof: General Mobius inversion as in (2.3) for a suitably defined partially ordered 
set (poset) gives (2.2); standard inclusion-exclusion (as in p 345 of Rota (1964)) also 
gives (2.2) but this requires a certain amount of manipulation whereas general Mobius 
inversion works directly once p ( * ,  a )  is evaluated. First define the appropriate poset 
C:c C, by 

c:={c$EC,: [5],=0}. 

Thus C: consists of mappings 5: C + S, C c [ n ]  (including C = 0, the empty set) 
where all points in Im(5) are repeated, i.e. for each c E C(5) # 0, there exists C ' E  C, 
c' f c, such that [ ( c )  = 5 ( c ' ) .  Define a partial ordering < on C: by 5, < 5, when 
C(&)G C(5, )  and for each C E  C(&), & ( c ) =  t 2 ( c )  (thus < is standard inclusion of 
functions). In the two-dimensional example given earlier one may take C((*) = 
{3,5,6,7,10,  11) when each of the sites (2, l ) ,  ( 3 , l )  and (3,O) is visited twice; then 
5, < 5* when C(&) = {3,7} or t2 < 5* when C(5,) = {5,6,10,11} but obviously 6, SC 
or vice versa. Then for any f: C: + R, Mobius inversion as described by Rota (1964) 
using the Mobius function p ( *  , ) on (C: , <) gives 

where 0 E C: is defined by C( 5) = 0. It remains to choose f( ) and determine ~ ( 0 ,  ). 
Define the repeated states R ( w )  of path w E Our:: as 5 = R ( w )  E C: given by C(5) = 

{ i E [ n ] :  there exists j f i, j E [ n ] ,  such that U (  i )  = w ( j ) }  and 5( c) = w (  c ) ,  c E C( 5) 
(possibly 5=0). Then (2.3) will be applied to 

f(0 = lb E w:: R ( o )  = 01 5 E  c: 
which counts the number of walks (of n steps, starting at 0 and ending at a )  with 
visits specified by [E C:. Thus for w to be counted, for each C E  C(,$), w ( c )  = [ ( c )  
must be satisfied while if c e  C ( 5 )  then w ( c )  must be visited exactly once. Dropping 
the last restriction on the sites visited at c g  C ( 6 )  leads to the following mapping 
defined for ,$E C:: 

F ( 5 )  = c f(r) = lb: 4 c )  = 5(c), c E C(5))I 
T't 

and 

% ( a )  =f(O). 
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Now show that for 5 E C:, giving the vector ( [ 5 ] ,  = 0, [512, . . .), 
p(0, 6) = ( - 1 ) c c - ' c + '  n ( j  - 1 ) [ , ' ,  . (2.4) 

TO calculate p ( 0 , 5 )  in general it suffices to take it = IIm(t)I= 1 so that [51j = 1, [ [ ] k  = 0, 
k # j and apply proposition 5 of 0 3 of Rota (1964) .  Effectively one writes 6:  C(()+ 
Im(5) = {rl , . . . , Tic} as the union of mappings &, . . . , t,p 5j c 6, where tj has domain 
6 - ' ( r j ) c  C(5) (and image r j )  in which case p(0, 5) =p(O, &) x . .  . x p(0, ti,). Now 
under the special assumption i, = 1 ,  p ( O , [ )  is just the Mobius function for subsets of 
C(5) when all singleton subsets are deleted. By definition 

j >  1 

I L ( O , O = -  c cL(0,r) 
O < T < <  

and so using induction together with the relationships p(0,O) = 1 and 

j 

r = t  
I +  ( ! ) ( r - l ) ( - l ) r + l = ~  

gives (2.4). 
Then (2.2) follows from (2.3) since for C ( 5 )  = {c1 < . . . < cCf} ,  

The formulae for w m ( b )  given in the statement are standard expressions for the 

Other quantities of interest in dealing with SAW may be obtained either from (2.2) 
number of paths in a three-dimensional random walk. 

or using slight modifications of the right-hand side. Thus, for instance, 

(since w, = lW,l= 6"'). 

examine the first three terms on the right-hand side in more detail. 
In order to obtain some appreciation of the calculations involved in (2.2), let us 

(a) c t = 2 ( i , = 1 ) :  

where the points reachable from 0 in rl steps and from a in r3 steps may be described 
by 

K ( r ,  s )  = { e :  leio < r, la - el0 < s }  

with la( = (a,l+(a,l+(a,( and lalo< t if laid t and t - la(  is even. 
(b) c e = 3 ( i , = 1 ) :  

. _ ~ - .  
r2. r3 even 
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(c) cz =4(i, = 1 or 2): 

where 

and 

These special cases illustrate the way in which the formula in (2.2) may be developed 
into an algorithm for computation. Although it compares favourably with techniques 
for enumeration mentioned in the introduction as far as obtaining results for small n, 
it is the author's belief that the real use of theorem 2.1 may be rather in application 
to the important unsolved asymptotic questions about S,. This is now briefly discussed. 

3. Remarks 

The enumeration result reported here as theorem 2.1 represents the starting point for 
a, by now, long-running attempt at deriving detailed asymptotic results about sn(a)  
from (2.2). This investigation also includes closely related problems about Hamilton 
circuits in graphs. Little tangible success has come from this approach, mainly it would 
seem because a sufficiently neat analytic expression for ZpEc:  seems out of reach. It 
remains therefore an interesting open question whether fqrmulae such as (2.2), obtained 
using Mobius inversion, may provide a useful technique for asymptotic analysis of 
sn(a)  or not. The analogy for hoping that such an approach might deliver results is 
with the sieving techniques of analytic number theory which as their very basic starting 
point use Mobius inversion for the integers (ordered by divisibility) (see, for example, 
ch 1 and the opening pages of ch 2 of Halberstam and Richert (1974)). 
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